Liposomal meningococcal B vaccination: Role of dendritic cell targeting in the development of a protective immune response

Publication Type:

Journal Article


Infection and Immunity, Volume 71, Number 9, pp. 5210-5218 (2003)



DOI Name (links to online publication)



outer-membrane protein; neisseria-meningitidis; antigen presentation; antibody avidity; mannose receptor; vesicle vaccine; phosphatidylserine; immunogenicity; adjuvants; disease


The effect of targeting strategies for improving the interaction of liposomal PorA with dendritic cells (DC on the immunogenicity of PorA was investigated. PorA, a major antigen of Neisseria meningitidis, was purified and reconstituted in different types of (targeted) liposomes, i.e., by using mannose or phosphatidylserine as targeting moieties, or with positively charged liposomes. We studied the efficiency of liposome uptake and its effect on the maturation of and interleukin 12 (IL-12) production by murine DC. Moreover, mice were immunized subcutaneously to study the localization and immunogenicity of PorA liposomes. Uptake of liposomes by DC was significantly increased for targeted liposomes and resulted in the maturation of DC, but to various degrees. Maturation markers (i.e., CD80, CD86, major histocompatibility complex class II, and CD40) showed enhanced expression on DC incubated with targeted PorA liposomes relative to those incubated with nontargeted PorA liposomes. Moreover, only the uptake of targeted PorA liposomes induced production of IL-12 by DC, with levels similar to those produced by lipopolysaccharide (LPS)-pulsed DC. Mannose-targeted PorA liposomes administered subcutaneously had an increased localization in draining lymph nodes compared to nontargeted PorA liposomes. Liposomes in draining lymph nodes interacted preferentially with antigen-presenting cells, an effect that was enhanced with targeted PorA liposomes. Immunization studies showed an improvement of the bactericidal antibody response (i.e., increased number of responders) generated by targeted PorA liposomes compared to that generated by nontargeted ones or LPS-containing outer membrane vesicles. In conclusion, the use of targeted PorA liposomes results in an improved uptake by and activation of DC and an increased localization in draining lymph nodes. These effects correlate with an enhanced immune response toward the vaccine.