Adjuvanted, antigen loaded N-trimethyl chitosan nanoparticles for nasal and intradermal vaccination: Adjuvant- and site-dependent immunogenicity in mice

Publication Type:

Journal Article


Eur J Pharm Sci, Volume 45, Issue 4, pp. 475-481 (2012)


1879-0720 (Electronic)09

DOI Name (links to online publication)



N-trimethyl chitosan (TMC) nanoparticles have been shown to increase the immunogenicity of subunit antigens after nasal and intradermal administration. This work describes a second generation of TMC nanoparticles containing ovalbumin as a model antigen (TMC/OVA nanoparticles) and an immunopotentiator (TMC/OVA/immunopotentiator nanoparticles). The selection of immunopotentiators included Toll-like receptor (TLR) ligands lipopolysaccharide (LPS), PAM(3)CSK(4) (PAM), CpG DNA, the NOD-like receptor 2 ligand muramyl dipeptide (MDP) and the GM1 ganglioside receptor ligand, cholera toxin B subunit (CTB). The TMC/OVA/immunopotentiator nanoparticles were characterised physico-chemically and their immunogenicity was assessed by determining the serum IgG, IgG1, IgG2a titres and secretory IgA levels in nasal washes after intradermal and nasal vaccination in mice. After nasal vaccination, TMC/OVA nanoparticles containing LPS or MDP elicited higher IgG, IgG1 and sIgA levels than non-adjuvanted TMC/OVA particles, whereas nanoparticles containing CTB, PAM or CpG did not. After intradermal vaccination, the TMC/OVA/CpG and TMC/OVA/LPS nanoparticles provoked higher IgG titres than plain TMC/OVA particles. Altogether, our results show that co-encapsulation of an additional immunopotentiator with the antigen into TMC nanoparticles can further improve the immunogenicity of the vaccine. However, the strength and quality of the response depends on the immunopotentiator as well as the route of administration.